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Abstract. Weakly-coupled Markov decision processes can be decomposed into 
subprocesses that interact only through a small set of bottleneck states. We study 
a hierarchical reinforcement learning algorithm designed to take advantage of 
this particular type of decomposability. To test our algorithm, we use a decision- 
making problem faced by autonomous planetary rovers. In this problem, a Mars 
rover must decide which activities to perform and when to traverse between sci- 
ence sites in order to make the best use of its limited resources. In our exper- 
iments, the hierarchical algorithm performs better than Q-learning in the early 
stages of learning, but unlike Q-learning it converges to a suboptimal policy. This 
suggests that it may be advantageous to use the hierarchical algorithm when train- 
ing time is limited. 

1 Introduction 

The Markov decision processes (MDP) framework is widely used to model problems 
in decision-theoretic planning and reinforcement learning [6]. Recently there has been 
increased interest in delimiting classes of MDPs that are naturally decomposable and 
developing special-purpose techniques for these classes [ 11. In this paper, we focus on 
reinforcement learning for weakly-coupled MDPs. A weakly-coupled MDP is an MDP 
that has a natural decomposition into a set of subprocesses. The transition from one 
subprocess to another requires entry into one of a small set of bottleneck states. Because 
the subprocesses are only connected through a small set of states, they are “almost” 
independent. The common intuition is that weakly-coupled MDPs should require less 
computational effort to solve than arbitrary MDPs. 

The algorithm that we investigate is a reinforcement learning version of a previously 
studied planning algorithm for weakly-coupled MDPs [2]. The planning algorithm is 
model based, whereas our algorithm requires only information from experience trajec- 
tories and knowledge about which states are the bottleneck states. This can be beneficial 
for problems where only a simulator or actual experience are available. Our algorithm 
fits into the category of hierarchical reinforcement learning (see, e.g., [7]) because i t  
learns simultaneously at the state level and at the subprocess level. We note that other 
researchers have proposed methods for solving weakly-coupled MDPs 13-51, but very 
little work has been done in a reinforcement learning context. 

For experimentation we use a problem from autonomous planetary rover control that 
can be modeled as a weakly-coupled MDP. In our decision-making scenario, a rover on 



Mars must explore a number of sites over the course of a day without stopping to estab- 
lish communication with Earth. Using only a list of sites, information about its resource 
levels, and information about the goals of the mission, the rover must decide which 
activities to perform and when to move from one site to the next. Limited resources 
and nondeterministic action effects make the problem nontrivial. In the main body of 
the paper, we describe in detail how this problem can be modeled as a weakly-coupled 
MDP, with each site being a separate subprocess. 

We compare the hierarchical algorithm with Q-learning, and we see that the hierar- 
chical algorithm performs better initially but fails to converge to the optimal policy. A 
third algorithm which is given the optimal values for the bottleneck states at the start ac- 
tually learns more slowly than both of the aforementioned algorithms. We give possible 
explanations for the observed behavior and suggestions for future work. 

2 MDPs and Reinforcement Learning 

A Markov decision process (MDP) models an agent acting in a stochastic environment 
with the aim of maximizing its expected long-term reward. The type of MDP we con- 
sider contains a finite set S of states, with s~ being the start state. For each state s E S, 
A, is a finite set of actions available to the agent. P is the table of transition probabil- 
ities, where P(s'ls,a) is the probability of a transition to state s' given that the agent 
performed action a in state s. R is the reward function, where R(s,a)  is the reward 
received by the agent given that it chose action a in state s.  

A policy T is a mapping from states to actions. Solving an MDP amounts to finding a 
policy that maximizes the expected long-term reward. In this paper, we use the infinite- 
horizon discounted optimality criterion. Formally, the agent should maximize 

m 

E Lo C7~R(St ,T (St ) ) ]  , 

where 7 E [0,1] is the discount factor. In order to model episodic tasks, we can include 
an absorbing state from which the agent can only receive an immediate reward of zero; 
a transition to the absorbing state corresponds to the end of an episode. 

Algorithms for MDPs often solve for valrcefunctions. For a policy K. the state value 
function, V X ( s ) ,  gives the expected total reward starting from state s and executing T.  

The state-action value function, Qn(s ,  a),  gives the expected total reward starting from 
state s, executing action a, and executing K from then on. 

When an explicit model is available, MDPs can be solved using standard dynamic 
programming techniques such as policy iteration or value iteration. When only a simu- 
lator or real experience are available, reinforcement learning methods are a reasonable 
choice. With these techniques, experience trajectories are used to learn a value function 
for a good policy. Actions taken on a trajectory are usually greedy with respect to the 
current value function, but exploratory actions must also be taken in order to discover 
better policies. One widely-used reinforcement learning algorithm is Q-learning [ 8 ] ,  
which updates the state-action value function after each transition from s to s' under 



action a with the following rule: 

Q(s,  a) + Q(s, 4 + a [ W s ,  4 + 7 yxQ(s‘,a‘) - Q(s,  a)] , 

where a is called the learning rate. 

3 Reinforcement Learning for Weakly-Coupled MDPs 

Consider an MDP with a state set S that is partitioned into disjoint subsets SI,. . . , S,. 
The out-space of a subset Si, denoted O(Si), is defined to be the set of states not in Si 
that are reachable in one step from Si. The set of states B = O(S1) U . U O(S,) that 
belong to the out-space of at least one subset comprise the set of bottleneck states. If 
the set of bottleneck states is relatively small, we call the MDP weakly-coupled. 

In [2], the authors describe an algorithm for weakly-coupled MDPs that can be 
described as a type of policy iteration. Initially, values for the bottleneck states are set 
arbitrarily. The low-level policy improvement phase involves solving each subproblem, 
treating the bottleneck state values as terminal rewards. The high-level policy evaluation 
phase consists of reevaluating the bottleneck states for these policies. Repeating these 
phases guarantees convergence to the optimal policy in a finite number of iterations. 

The rules for backpropagating value information in our reinforcement learning algo- 
rithm are derived from the two phases mentioned above. Two benefits of our approach 
are that it doesn’t require an explicit model and that learning can proceed simultane- 
ously at the high level and at the low level. 

We maintain two different value functions: a low-level state-action value function 
Q defined over all state-action pairs and a high-level state value function vh defined 
over only bottleneck states. The low-level part of the learning is described as follows. 
Upon a transition to a non-bottleneck state, the standard Q-learning backup is applied. 
However, when a bottleneck state s’ E B is encountered, the following backup rule is 
used: 

Q(s ,  a) +- Q(S, a )  + ai [R(s,  a) + 7vhb’) - Q(s, 41 I 

where a[ is a learning rate. For the purposes of learning, the bottleneck state is treated 
as a terminal state, and its value is the terminal reward. High-level backups occur only 
upon a transition to a bottleneck state. The backup rule is: 

where IC denotes the number of time steps elapsed between the two bottleneck states, R 
is the cumulative discounted reward obtained over this time, and a h  is a learning rate. 

It is possible to alternate between phases of low-level and high-level backups or 
to perform the backups simultaneously. Whether either approach converges to an op- 
timal policy is an open problem. We chose the latter for our experiments because our 
preliminary work showed it  be more promising. 



4 Autonomous Planetary Rover Control 

4.1 The Model 

In this section we describe a simple version of the rover decision-making problem and 
how it fits within the weakly-coupled MDP framework. In our scenario, a rover is to 
operate autonomously for a period of time. It has an ordered sequence of sites along 
with priority information and estimated difficulty of obtaining data, and it must make 
decisions about which activities to perform and when to move from one site to the 
next. The goal is to maximize the amount of useful work that gets done during the time 
period. 

The action set consists of taking a picture, performing a spectrometer experiment, 
and traversing to the next site in the sequence. Spectrometer experiments take more 
time and are more unpredictable than pictures, but they yield better data. The time to 
traverse between sites is a noisy function of the distance between the sites. The state 
features are the time remaining in the day, the current site number (from which priority 
and estimated difficulty are implicitly determined), the number of pictures taken at the 
current site, and whether or not satisfactory spectrometer data has been obtained at the 
current site. Formally, S = T x I x P x E, where T = (0 min, 5 min, . . . ,300 min) 
is the set of time values; I = (1,2,3,4,5} is the set of sites; P = (0,1,2} is the set 
of values for pictures taken; and E = (0,1} is the set of values for the quality of the 
spectrometer data. The start state is $0 = (300,1,0,0). The sequence of sites used for 
our experiments is shown in Table 1. 

Table 1. The sequence of sites for the rover to investigate 

Site I Priority I Estimated difficulty I Distance to next site 
medium 3 m  

A nonzero reward can only be obtained upon departure from a site and is a function 
of the site’s priority and the dataobtained at the site. The task is episodic with 7 = 1. An 
episode ends when the time component reaches zero or the rover finishes investigating 
the last site. The aim is to find a policy that maximizes the expected total reward across 
all sites investigated during an episode. Because of limited time and nondeterministic 
action effects, the optimal action is not always obvious. 

In order to see how this problem fits into the weakly-coupled MDP framework, 
consider the set of states resulting from a traversal between sites. In all of these states, 
the picture and spectrometer components of the state are reset to zero. The set B = 
T x I x (0) x (0) is taken to be the set of bottleneck states, and it is over this set that 
we define the high-level value function. Note that the bottleneck states comprise only 
300 of the problem’s 1,800 states. 



4.2 Experiments 

In our experiments, we tested Q-learning against the hierarchical algorithm on the prob- 
lem mentioned in the previous section. In addition, we tested an algorithm that we call 
the omniscient hierarchical learning algorithm. This algorithm is the same as the hier- 
archical algorithm, except that the values for the bottleneck states are fixed to optimal 
from the start, and only low-level backups are performed. By fixing the bottleneck val- 
ues, the problem is completely decomposed from the start. Of course, this cannot be 
done in practice, but it is interesting for the purpose of comparison. 

For the experiments, all values were initialized to zero, and we used e-greedy ex- 
ploration with e = 0.1 [6]. For the results shown, all of the learning rates were set to 
0.1 (we obtained qualitatively similar results with learning rates of 0.01,0.05, and 0.2). 
Figure 1 shows the total reward per episode plotted against the number of episodes of 
learning. The points on the curves represent averages over periods 1000 episodes. 
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Fig. 1. Learning curves for Q-learning. hierarchical learning, and omniscient hierarchical learning 

A somewhat counterintuitive result is that the omniscient hierarchical algorithm 
performs worse than both the original hierarchical algorithm and Q-learning during 
the early stages. One factor contributing to this is the initialization of the state-action 
values to zero. During the early episodes of learning, the value of the “leave” action 
grows more quickly than the values for the other actions because it is the only one that 
leads directly to a highly-valued bottleneck state. Thus the agent frequently leaves a 
site without having gathered any data. This result demonstrates that decomposability 
doesn’t always guarantee a more efficient solution. 

The second result to note is that the hierarchical algorithm performs better than Q- 
learning initially, but then fails to converge to the optimal policy. It is intuitively plausi- 
ble that the hierarchical algorithm should go faster, since it implicitly forms an abstract 
process involving bottleneck states and propagates value information over multiple time 
steps. It also makes sense that the algorithm doesn’t converge once we consider that the 
high-level backups are oflpolicy. This means that bottleneck states are evaluated for the 
policy that is being executed, and this policy always includes non-greedy exploratory 



actions. Algorithms such as Q-learning, on the other hand, learn about the policy that 
is greedy with respect to the value function regardless of which policy is actually being 
executed. 

5 Conclusion 

We studied a hierarchical reinforcement learning algorithm for weakly-coupled MDPs, 
using a problem in planetary rover control as a testbed. Our results indicate that the 
decomposability of these problems can lead to greater efficiency in learning, but the 
conditions under which this will happen are not yet well understood. Perhaps exper- 
imentation with different low-level and high-level learning rates could shed some in- 
sight. Also, experimental results from other weakly-coupled MDPs besides the rover 
problem would be valuable. Finally, a more detailed theoretical investigation may yield 
an algorithm similar to ours that is provably convergent. 

On the application side, we plan to develop a more realistic and complex simulator 
of the rover decision-making problem. In this simulator, the rover will choose among 
multiple sites to traverse to. It will also have to manage its data storage and battery 
capacity and perform activities during constrained time intervals. The state space of the 
model will most likely be too large to explicitly store a value for each state. We will 
instead have to use some form of function approximation. 
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